EMBER NEXUS API

For Knowledge Graphs

R S

‘l._._

A N
A o> e
)

_ Speaker
SOREN KLEIN

ﬂ
- &
%*

29™ JAN 2024
© 10:00 PT | 19:00 CET

@ https://bit.ly/graphgeeks

'j:

X X X X

Graph g
GEEKSUQ




A

Ember Nexus
Knowledge Graph API



O B NN

. The motivation behind Ember Nexus API
. Requirements and lessons learned

. Frontend: How would | like to work with data?
. API: Current state with examples

. Plans for the future



1. The motivation behind Ember Nexus API



As a child, | was always fascinated by data. | was curious about
outliers that broke simplified rules, leading to a more complete

understanding of our world. As | grew older, my interest in data
deepened.

However, | faced a challenge when it came to storing all this
data. Maintaining the schemas of databases required more
and more time, especially if | wanted to push the
capabilities further.



| made several attempts to build an APl geared towards data
storage and retrieval, but failed often and learned from my
mistakes. Eventually, | stumbled upon Neo4j, and after an
amazing initial experiment, | was hooked! :D

This was the start of my graph journey, and half a year later, |
began developing another data API, which eventually

became Ember Nexus API.



2. Requirements and lessons learned



Simplicity is important.



Limited features can still result in
complex results, e.g. Conway's Game of Life.



Standards are great.



Standards are great.

Not every standard works for everybody;
being able to change defaults is important.



How do | want to implements these
requirements and lessons?



Atomic data.

The API should not enforce how | store data
within the smallest indivisible element.

Normalization is a powerful tool, but requiring
to normalize everything is a burden.



Global identifier.

Every element should be accessible in a single step.

Access should not require knowing the element’s type,
just its identifier. The identifier is basically globally unique.



Open types.

User can define types themself.
Elements can be of any type.



Visualizations require context.

Elements should be displayed and
visualized in different ways, depending
on their type and context.



Great defaults, easy modification.

The default visualizations should be easily useable
and understandable by the average user.

Power users should be able to modify, replace,
and add their own visualizations.



3. Frontend: How would | like to work with data?



Components can visualize
individual nodes and edges.

Name of the element VYV
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...

Relation Name of the element \V/
—_— StartNodeType -- RELATION_TYPE — EndNodeType



Components are available in different
shapes and sizes to adapt to different
environments & contexts.

Frameless
\4
Inline Text Inline Pill
B © ¢ Name of the user Name of the user
Card
Thumbnail
Name of the user \V/ Name of the user

User User



Components are composable, i.e. they can
contain other components to display

related data.

Name of the element V

Type

= some blue tag

Description Lorem ipsum
dolor sit amet, consetetur

sadipscing el

itr sed C

lal...



Components can try to render
more data if available.

Name of the element
Type
Description Lorem ipsum

dolor sit amet, consetetur
sadipscing elitr, sed diam...

\Y%

Name of the element WV
Type

2I some blue tag

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...



In the absence of specialized components,
elements will be visualized by fallback components.

Name of the element V
Type
Description Lorem ipsum

dolor sit amet, consetetur
sadipscing elitr, sed diam...




Now that we can display data as
components, what can we do with them?



Single data node:



Card visualization:

Name of the element V
Type
Description Lorem ipsum

dolor sit amet, consetetur
sadipscing elitr, sed diam...



Full screen frame:

Name of the user
User



Collection of data nodes:



Name of the element
Type

Name of the element
Type

Name of the element
Type

Name of the element
Type

List:



Gri




4. API: Current state with examples



