


Ember Nexus
Knowledge Graph API



The motivation behind Ember Nexus API

Requirements and lessons learned

Frontend: How would I like to work with data?

API: Current state with examples

Plans for the future

1.

2.

3.

4.

5.



The motivation behind Ember Nexus API1.



As a child, I was always fascinated by data. I was curious about
outliers that broke simplified rules, leading to a more complete
understanding of our world. As I grew older, my interest in data
deepened.

However, I faced a challenge when it came to storing all this
data. Maintaining the schemas of databases required more
and more time, especially if I wanted to push the
capabilities further.



I made several attempts to build an API geared towards data
storage and retrieval, but failed often and learned from my
mistakes. Eventually, I stumbled upon Neo4j, and after an
amazing initial experiment, I was hooked! :D

This was the start of my graph journey, and half a year later, I
began developing another data API, which eventually
became Ember Nexus API.



Requirements and lessons learned2.



Simplicity is important.



Limited features can still result in
complex results, e.g. Conway's Game of Life.



Standards are great.



Not every standard works for everybody;
being able to change defaults is important.

Standards are great.



How do I want to implements these
requirements and lessons?



The API should not enforce how I store data
within the smallest indivisible element.

Atomic data.

Normalization is a powerful tool, but requiring
to normalize everything is a burden.



Every element should be accessible in a single step.

Global identifier.

Access should not require knowing the element's type,
just its identifier. The identifier is basically globally unique.



User can define types themself.
Elements can be of any type.

Open types.



Elements should be displayed and
visualized in di�erent ways, depending

on their type and context.

Visualizations require context.



The default visualizations should be easily useable
and understandable by the average user.

Great defaults, easy modification.

Power users should be able to modify, replace,
and add their own visualizations.



Frontend: How would I like to work with data?3.



Components can visualize
individual nodes and edges.

StartNodeType -- RELATION_TYPE -> EndNodeType
Name of the element

Name of the element
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...

Relation

Node



Components are available in di�erent
shapes and sizes to adapt to di�erent
environments & contexts.

Name of the user

Inline Text

CBA

Icon Inline Pill

Name of the user

Thumbnail

Card

Name of the user
User

Frameless

Name of the user
User



Components are composable, i.e. they can
contain other components to display
related data.

Name of the element
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...

some blue tag
CREAT

ED_BY

Data

User

Tag

HAS_TAG



Components can try to render
more data if available.

Name of the element
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...

some blue tag

Name of the element
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...

CREAT
ED_BY

Data

User

Tag

HAS_TAG



In the absence of specialized components,
elements will be visualized by fallback components.

Node

Name of the element
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...



Now that we can display data as
components, what can we do with them?



Single data node:

Node



Card visualization:

Name of the element
Type

Description Lorem ipsum
dolor sit amet, consetetur
sadipscing elitr, sed diam...



Full screen frame:

Name of the user
User



Collection of data nodes:

Node

NodeNode

Node

Node



List:

Name of the element
Type

Name of the element
Type

Name of the element
Type

Name of the element
Type



Grid:

A B
AB

A B



API: Current state with examples4.


